On the reduction of an arbitrary real square matrix to tridiagonal form

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduction of a General Matrix to Tridiagonal Form

An algorithm for reducing a nonsymmetric matrix to tridiagonal form as a rst step toward nding its eigenvalues is described. The algorithm uses a variation of threshold pivoting, where at each step, the pivot is chosen to minimize the maximum entry in the transformation matrix that reduces the next column and row of the matrix. Situations are given where the tridiagonalization process breaks do...

متن کامل

the effect of consciousness raising (c-r) on the reduction of translational errors: a case study

در دوره های آموزش ترجمه استادان بیشتر سعی دارند دانشجویان را با انواع متون آشنا سازند، درحالی که کمتر به خطاهای مکرر آنان در متن ترجمه شده می پردازند. اهمیت تحقیق حاضر مبنی بر ارتکاب مکرر خطاهای ترجمانی حتی بعد از گذراندن دوره های تخصصی ترجمه از سوی دانشجویان است. هدف از آن تاکید بر خطاهای رایج میان دانشجویان مترجمی و کاهش این خطاها با افزایش آگاهی و هوشیاری دانشجویان از بروز آنها است.از آنجا ک...

15 صفحه اول

ON CONEIGENVALUES OF A COMPLEX SQUARE MATRIX

In this paper, we show that a matrix A in Mn(C) that has n coneigenvectors, where coneigenvaluesassociated with them are distinct, is condiagonalizable. And also show that if allconeigenvalues of conjugate-normal matrix A be real, then it is symmetric.  

متن کامل

On the Fast Reduction of Symmetric Rationally Generated Toeplitz Matrices to Tridiagonal Form

In this paper two fast algorithms that use orthogonal similarity transformations to convert a symmetric rationally generated Toeplitz matrix to tridiagonal form are developed, as a means of finding the eigenvalues of the matrix efficiently. The reduction algorithms achieve cost efficiency by exploiting the rank structure of the input Toeplitz matrix. The proposed algorithms differ in the choice...

متن کامل

The Structured Distance to Normality of an Irreducible Real Tridiagonal Matrix

The problem of computing the distance in the Frobenius norm of a given real irreducible tridiagonal matrix T to the algebraic variety of real normal irreducible tridiagonal matrices is solved. Simple formulas for computing the distance and a normal tridiagonal matrix at this distance are presented. The special case of tridiagonal Toeplitz matrices also is considered.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1964

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-1964-0165670-0